A Flexible Primal-Dual Toolbox
نویسنده
چکیده
FlexBox is a flexible MATLAB toolbox for finite dimensional convex variational problems in image processing and beyond. Such problems often consist of non-differentiable parts and involve linear operators. The toolbox uses a primal-dual scheme to avoid (computationally) inefficient operator inversion and to get reliable error estimates. From the user-side, FlexBox expects the primal formulation of the problem, automatically decouples operators and dualizes the problem. For large-scale problems, FlexBox also comes with a C++-module, which can be used stand-alone or together with MATLAB via MEX-interfaces. Besides various pre-implemented data-fidelities and regularization-terms, FlexBox is able to handle arbitrary operators while being easily extendable, due to its object-oriented design. The toolbox is available at http://www.flexbox.im
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملPrimal and dual linear decision rules in stochastic and robust optimization
Linear stochastic programming provides a flexible toolbox for analyzing reallife decision situations, but it can become computationally cumbersome when recourse decisions are involved. The latter are usually modeled as decision rules, i.e., functions of the uncertain problem data. It has recently been argued that stochastic programs can quite generally be made tractable by restricting the space...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملEfficient Training of Graph-Regularized Multitask SVMs
We present an optimization framework for graph-regularized multi-task SVMs based on the primal formulation of the problem. Previous approaches employ a so-called multi-task kernel (MTK) and thus are inapplicable when the numbers of training examples n is large (typically n < 20, 000, even for just a few tasks). In this paper, we present a primal optimization criterion, allowing for general loss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.05835 شماره
صفحات -
تاریخ انتشار 2016